Skip to content
Home
Limited diffusion of scientific knowledge forecasts collapse
- Arthur, W. B. Complexity in economic and financial markets. Complexity 1, 20–25 (1995).
- Article Google Scholar
- Harras, G. & Sornette, D. How to grow a bubble: a model of myopic adapting agents. J. Econ. Behav. Organ. 80, 137–152 (2011).
- Article Google Scholar
- Goldman, A. I. & Shaked, M. An economic model of scientific activity and truth acquisition. Philos. Stud. 63, 31–55 (1991).
- Article Google Scholar
- Pedersen, D. B. & Hendricks, V. F. Science bubbles. Philos. Technol. 27, 503–518 (2014).
- Article Google Scholar
- Evans, J. P., Meslin, E. M., Marteau, T. M. & Caulfield, T. Genomics. Deflating the genomic bubble. Science 331, 861–862 (2011).
- Article CAS PubMed Google Scholar
- Fortunato, S. et al. Science of science. Science 359, eaao0185 (2018).
- Partha, D. & David, P. A. Toward a new economics of science. Res. Policy 23, 487–521 (1994).
- Article Google Scholar
- Small, H., Boyack, K. W. & Klavans, R. Identifying emerging topics in science and technology. Res. Policy 43, 1450–1467 (2014).
- Article Google Scholar
- Funk, R. J. & Owen-Smith, J. A dynamic network measure of technological change. Manage. Sci. 63, 791–817 (2016).
- Article Google Scholar
- Klavans, R., Boyack, K. W. & Murdick, D. A. A novel approach to predicting exceptional growth in research. PLoS ONE 15, e0239177 (2020).
- Article CAS PubMed PubMed Central Google Scholar
- Weis, J. W. & Jacobson, J. M. Learning on knowledge graph dynamics provides an early warning of impactful research. Nat. Biotechnol. 39, 1300–1307 (2021).
- Article CAS PubMed Google Scholar
- Lin, Y., Evans, J. A. & Wu, L. New directions in science emerge from disconnection and discord. J. Informetr. 16, 101234 (2022).
- Article Google Scholar
- Petersen, A. M., Pan, R. K., Pammolli, F. & Fortunato, S. Methods to account for citation inflation in research evaluation. Res. Policy 48, 1855–1865 (2019).
- Article Google Scholar
- Hutchins, B. I., Yuan, X., Anderson, J. M. & Santangelo, G. M. Relative Citation Ratio (RCR): a new metric that uses citation rates to measure influence at the article level. PLoS Biol. 14, e1002541 (2016).
- Article PubMed PubMed Central Google Scholar
- Taylor, M. & Heath, B. Years after Brigham–Harvard scandal, U.S. pours millions into tainted stem-cell field. Reuters (21 June 2022).
- Anversa, P., Kajstura, J., Leri, A. & Bolli, R. Life and death of cardiac stem cells: a paradigm shift in cardiac biology. Circulation 113, 1451–1463 (2006).
- Article PubMed Google Scholar
- 2009 Current Fiscal Year Report: Board of Scientific Counselors, National Institute on Aging. The Federal Advisory Committee Act (FACA) Database (Department of Health and Human Services, 2009); https://www.facadatabase.gov/FACA/apex/FACACommitteeLevelReportAsPDF?id=a10t0000001h2ObAAI
- Murry, C. E. et al. Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature 428, 664–668 (2004).
- Article CAS PubMed Google Scholar
- Vrotsos, L. W. Harvard Medical School requests retractions for former professor’s research. The Harvard Crimson (16 October 2018).
- Oransky, I. & Marcus, A. Harvard and the Brigham call for more than 30 retractions of cardiac stem cell research. STAT News (14 October 2018).
- Davis, D. R. Cardiac stem cells in the post-Anversa era. Eur. Heart J. 40, 1039–1041 (2019).
- Article PubMed Google Scholar
- Osafune, K. et al. Marked differences in differentiation propensity among human embryonic stem cell lines. Nat. Biotechnol. 26, 313–315 (2008).
- Article CAS PubMed Google Scholar
- Harris, R. Rigor Mortis: How Sloppy Science Creates Worthless Cures, Crushes Hope, and Wastes Billions (Basic Books, 2017).
- Neimark, J. Line of attack. Science 347, 938–940 (2015).
- Article CAS PubMed Google Scholar
- Hughes, P., Marshall, D., Reid, Y., Parkes, H. & Gelber, C. The costs of using unauthenticated, over-passaged cell lines: how much more data do we need? Biotechniques 43, 575–586 (2007).
- Article Google Scholar
- Xu, J. et al. Building a PubMed knowledge graph. Sci. Data 7, 205 (2020).
- Article PubMed PubMed Central Google Scholar
- Teplitskiy, M., Acuna, D., Elamrani-Raoult, A., Körding, K. & Evans, J. The sociology of scientific validity: how professional networks shape judgement in peer review. Res. Policy 47, 1825–1841 (2018).
- Article Google Scholar
- Belikov, A. V., Rzhetsky, A. & Evans, J. Prediction of robust scientific facts from literature. Nat. Mach. Intell. 4, 445–454 (2022).
- Article Google Scholar
- Quaini, F. et al. Chimerism of the transplanted heart. N. Engl. J. Med. 346, 5–15 (2002).
- Article PubMed Google Scholar
- Freeman, G. J. et al. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J. Exp. Med. 192, 1027–1034 (2000).
- Article CAS PubMed PubMed Central Google Scholar
- Azoulay, P., Fons-Rosen, C. & Zivin, J. S. G. Does science advance one funeral at a time? Am. Econ. Rev. 109, 2889–2920 (2019).
- Article PubMed PubMed Central Google Scholar
- Le, Q. & Mikolov, T. Distributed representations of sentences and documents. In Proc. 31st International Conference on Machine Learning (eds Xing, E. P. & Jebara, T.) 1188–1196 (PMLR, 2014).
- Laflamme, M. A. & Murry, C. E. Regenerating the heart. Nat. Biotechnol. 23, 845–856 (2005).
- Article CAS PubMed Google Scholar
- van Berlo, J. H. et al. C-kit+ cells minimally contribute cardiomyocytes to the heart. Nature 509, 337–341 (2014).
- Article PubMed PubMed Central Google Scholar
- Chien, K. R. et al. Regenerating the field of cardiovascular cell therapy. Nat. Biotechnol. 37, 232–237 (2019).
- Article CAS PubMed Google Scholar
- Mellman, I., Coukos, G. & Dranoff, G. Cancer immunotherapy comes of age. Nature 480, 480–489 (2011).
- Article CAS PubMed PubMed Central Google Scholar
- Finck, A., Gill, S. I. & June, C. H. Cancer immunotherapy comes of age and looks for maturity. Nat. Commun. 11, 3325 (2020).
- Article CAS PubMed PubMed Central Google Scholar
- Smyth, M. J. & Teng, M. W. 2018 Nobel Prize in physiology or medicine. Clin. Transl. Immunol. 7, e1041 (2018).
- Article Google Scholar
- Lin, J. & Wilbur, W. J. PubMed related articles: a probabilistic topic-based model for content similarity. BMC Bioinformatics 8, 423 (2007).
- Article PubMed PubMed Central Google Scholar
- Azoulay, P., Bonatti, A. & Krieger, J. L. The career effects of scandal: evidence from scientific retractions. Res. Policy 46, 1552–1569 (2017).
- Article Google Scholar
- Myers, K. The elasticity of science. Am. Econ. J. Appl. Econ. 12, 103–134 (2020).
- Article Google Scholar
- Reschke, B. P., Azoulay, P. & Stuart, T. E. Status spillovers: the effect of status-conferring prizes on the allocation of attention. Adm. Sci. Q. 63, 819–847 (2018).
- Article Google Scholar
- Danchev, V., Rzhetsky, A. & Evans, J. A. Centralized scientific communities are less likely to generate replicable results. eLife 8, e43094 (2019).
- Article PubMed PubMed Central Google Scholar
- Bourdieu, P. The specificity of the scientific field and the social conditions of the progress of reason. Soc. Sci. Inf. 14, 19–47 (1975).
- Article Google Scholar
- Kim, J., Wang, Z., Shi, H., Ling, H.-K. & Evans, J. Individual misinformation tagging reinforces echo chambers; collective tagging does not. Preprint at https://arxiv.org/abs/2311.11282 (2023).
- Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S. & Dean, J. Distributed representations of words and phrases and their compositionality. Adv. Neural Inf. Process. Syst. 26, 3111–3119 (2013).
- Google Scholar
- Kozlowski, A. C., Taddy, M. & Evans, J. A. The geometry of culture: analyzing the meanings of class through word embeddings. Am. Sociol. Rev. 84, 905–949 (2019).
- Article Google Scholar
- Garg, N., Schiebinger, L., Jurafsky, D. & Zou, J. Word embeddings quantify 100 years of gender and ethnic stereotypes. Proc. Natl Acad. Sci. USA 115, E3635–E3644 (2018).
- Article CAS PubMed PubMed Central Google Scholar
- Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: online learning of social representations. In Proc. 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining 701–710 (Association for Computing Machinery, 2014).
- Grover, A. & Leskovec, J. node2vec: scalable feature learning for networks. KDD 2016, 855–864 (2016).
- PubMed PubMed Central Google Scholar
- Rehurek, R. & Sojka, P. Software framework for topic modelling with large corpora. In Proc. LREC 2010 Workshop on New Challenges for NLP Frameworks 45–50 (Univ. of Malta, 2010).
- Foster, J. G., Rzhetsky, A. & Evans, J. A. Tradition and innovation in scientists’ research strategies. Am. Sociol. Rev. 80, 875–908 (2015).
- Article Google Scholar
- Azoulay, P., Furman, J. L. & Murray, F. Retractions. Rev. Econ. Stat. 97, 1118–1136 (2015).
- Article Google Scholar
- de Solla Price, D. J. Little Science, Big Science—and Beyond (Columbia Univ. Press, 1963).
- Kang, D. Limited diffusion of scientific knowledge forecasts collapse. GitHub https://github.com/Donghyun-Kang-Soc/limited_diffusion (2024).
